Exploring Acceleration Module

Module #1: Motion in One Dimension
- Check lab your supplies
- Introduction
- Distance and Displacement
- CD-ROM: Example 1.1
- Speed and Velocity
- CD-ROM: Example 1.2
- Average and Instantaneous Velocity
- Experiment 1.1: Measuring Average Velocity
- CD-ROM: Example 1.4
- CD-ROM: Example 1.6
- Review Questions
- Practice Problems

Module #2: One-Dimensional Motion Equations and Free Fall
- Check lab your supplies
- Introduction
- Relating Velocity, Acceleration and Time
- CD-ROM: Example 2.1
- Relating Velocity, Acceleration and Displacement
- CD-ROM: Example 2.2
- Review Questions
- Practice Problems

Module #3: Two-Dimensional Vectors
- Check lab your supplies
- Introduction
- Vectors
- Adding & Subtracting 2-Dimensional Vectors: Graphical
- CD-ROM: Example 3.1
- Vector Components
- Experiment 3.1: Vector Components
- CD-ROM: Example 3.3
- Determining a Vector’s Components from Its Magnitude and Direction
- CD-ROM: Example 3.5
- Review Questions
- Practice Problems

Module #4: Motion in Two Dimensions
- Check lab your supplies
- Introduction
- Navigation in Two Dimensions
- CD-ROM: Example 4.2
- Projectile Motion in Two Dimensions
- CD-ROM: Example 4.3
- The Range Equation
- CD-ROM: Example 4.4
- Exp’t 4.1: The Two Dimensions of A Rubber Band’s Flight
- CD-ROM: demonstration of experiment 4.1
- 2-Dim’l Settings In Which You Can’t Use the Range Equation
- CD-ROM: Example 4.5
- Experiment 4.2: Measuring Horizontal Speed of Object Without a Stopwatch
- CD-ROM: Example 4.6
- Review Questions
- Practice Problems

Module #5: Newton’s Laws
- Check lab your supplies
- Introduction
- Sir Isaac Newton
- Newton’s First Law
- Experiment 5.1: Inertia
- Newton’s Second Law
- Mass and Weight
- CD-ROM: Example 5.2
- CD-ROM: Example 5.3
- The Normal Force
- CD-ROM: Example 5.4
- Friction
- Experiment 5.2: The Frictional Force
- An Equation for the Frictional Force
- CD-ROM: Example 5.5
- Newton’s Third Law
- Review Questions
- Practice Problems

Module #6: Applications of Newton’s Second Law
- Check lab your supplies
- Introduction
- Translational Equilibrium
- CD-ROM: Example 6.1
- CD-ROM: Example 6.2
- Translational Equilibrium and Measuring Weight
- Experiment 6.1: Measuring Acceleration in an Elevator
- Rotational Motion and Torque
- Experiment 6.2: What Causes Rotational Acceleration?
- Rotational Equilibrium
- CD-ROM: Example 6.4
- Objects on an Inclined Surface
- Experiment 6.3: Measuring a Co-Efficient of Static Friction
- CD-ROM: Example 6.5
- Applying Newton’s 2nd Law To More Than One Object at a Time
- CD-ROM: Example 6.6
- Review Questions
- Practice Problems

Module #7: Uniform Circular Motion and Gravity
- Check lab your supplies
- Introduction
- Uniform Circular Motion
- Centripetal Force and Centripetal Acceleration
- Experiment 7.1: Centripetal Force
- Source of Centripetal Force
- CD-ROM: Example 7.2
- A Frictional Force
- Gravity
- CD-ROM: Example 7.4
- Circular Motion Terminology
- CD-ROM: Example 7.5
- Gravity and the Motion of the Planets
- CD-ROM: figure 7.4
- CD-ROM: Example 7.6
- CD-ROM: Example 7.7
- Review Questions
- Practice Problems

Module #8: Work and Energy
- Check lab your supplies
- Introduction
- The Definitions of Work and Energy
- The Mathematical Definition of Work
- Kinetic and Potential Energy
- CD-ROM: Example 8.3
- The First Law of Thermodynamics
- CD-ROM: Example 8.4
- CD-ROM: Example 8.5
- Experiment 8.1: Energy in a Pendulum
- Friction, Work and Energy
- CD-ROM: Example 8.6
- Experiment 8.2: Estimating the Work Done by Friction
<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
</tr>
</thead>
</table>
| Module 9: Momentum | Check lab your supplies
Introduction
Definition of Momentum
Impulse
Experiment 9.1: Egg Drop
CD-ROM: Example 9.2
The Conservation of
Momentum
Experiment 9.2: Momentum and Energy Conservation
The Mathematics of
Momentum Conservation
CD-ROM: Example 9.4
CD-ROM: figure 9.1
CD-ROM: Example 9.5
Angular Momentum
CD-ROM: Example 9.6
Review Questions
Practice Problems |
| Module 10: Periodic Motion | Check lab your supplies
Introduction
Hooke’s Law
Experiment 10.1: Hooke’s Law
CD-ROM: Example 10.1
Uniform Circular Motion
The Mass/Spring System
Experiment 10.2: The Characteristics of a Mass/Spring System
The Mathematics of the Mass/Spring System
More Analysis of Experiment 10.2
CD-ROM: Example 10.3
Potential Energy in a Mass/Spring System
CD-ROM: Example 10.4
The Simple Pendulum
Review Questions
Practice Problems |
| Module 11: Waves | Check lab your supplies
Introduction
Waves
CD-ROM: figure 11.1
CD-ROM: figure 11.2
The Physical Nature of Sound
Experiment 11.1: Frequency and Volume of Sound Waves
CD-ROM: Example 11.1
The Doppler Effect
Experiment 11.2: The Doppler Effect
CD-ROM: Example 11.2
Sound Waves in Substances Other Then Air
Sound Waves Beyond the Ear’s Ability to Hear
The Speed of Light
Light as a Wave |
| Module 12: Geometric Optics | Check lab your supplies
Introduction
The Law of Reflection
Experiment 12.1: The Law of Reflection
Flat Mirrors
Spherical Mirrors
CD-ROM: Figure 12.4
Ray Tracing in Concave Spherical Mirrors
Experiment 12.2: Real and Virtual Images in a Concave Mirror
Ray Tracing in Convex Spherical Mirrors
Snell’s Law of Refraction
Experiment 12.3: Measuring the Index of Refraction of Glass
Converging Lenses
CD-ROM: Example 12.9
Diverging Lenses
The Human Eye
Review Questions
Practice Problems |
| Module 13: Coulomb’s Law and the Electric Field | Check lab your supplies
Introduction
The Basics of Electric Charge
Experiment 13.1: Attraction and Repulsion
CD-ROM: demonstration
Experiment 13.2: Making and Using an Electroscope
Electrostatic Force and Coulomb’s Law
Multiple Charges and the Electrostatic Force
CD-ROM: Example 13.2
The Electric Field
Calculating the Strength of the Electric Field
CD-ROM: Example 13.4
Applying Coulomb’s Law to the Bohr Model of the Atom
CD-ROM: Example 13.5
Review Questions
Practice Problems |
| Module 14: Electric Potential | Check lab your supplies
Introduction
Electric Potential
Electric Potential, Potential Energy and Potential Difference
Potential Difference and the Change in Potential Energy
Conservation of Energy in an Electric Potential |
| Module 15: Electric Circuits | Check lab your supplies
Introduction
Batteries, Circuits and Conventional Current
Resistance
Experiment 15.1: Current and Resistance
Electric Heaters
Electric Power
Switches and Circuits
Experiment 15.2: Building a Simple Circuit to Turn on a Light Bulb
CD-ROM: example 15.5
Series and Parallel Circuits
CD-ROM: figure 15.6
CD-ROM: figure 15.7
Experiment 15.3: Series and Parallel Resistors
The Mathematics of Series and Parallel Circuits
CD-ROM: Example 15.3
Fuses and Circuit Breakers
Current and Power in Series and Parallel Circuits
CD-ROM: Example 15.4
Analyzing More Complicated Circuits
CD-ROM: Example 15.5
Review Questions
Practice Problems |
| Module 16: Magnetism | Check lab your supplies
Introduction
Permanent Magnets
Magnetic Fields
CD-ROM: figure 16.3
How Magnets Become Magnetic
Experiment 16.1: Oersted’s Experiment
Experiment 16.2: Diamagnetic, Paramagnetic, and Ferromagnetic Compounds
The Earth’s Magnetic Field
The Magnetic Field of a Current-Carrying Wire
Faraday’s Law of Electromagnetic Induction
Using Faraday’s Law
Alternating Current
Some Final Thoughts
Review Questions
Practice Problems |